Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
Developing autonomous vehicles (AVs) helps improve the road safety and traffic efficiency of intelligent transportation systems (ITS). Accurately predicting the trajectories of traffic participants is essential to the decision-making and motion planning of AVs in interactive scenarios. Recently, learning-based trajectory predictors have shown state-of-the-art performance in highway or urban areas. However, most existing learning-based models trained with fixed datasets may perform poorly in continuously changing scenarios. Specifically, they may not perform well in learned scenarios after learning the new one. This phenomenon is called "catastrophic forgetting". Few studies investigate trajectory predictions in continuous scenarios, where catastrophic forgetting may happen. To handle this problem, first, a novel continual learning (CL) approach for vehicle trajectory prediction is proposed in this paper. Then, inspired by brain science, a dynamic memory mechanism is developed by utilizing the measurement of traffic divergence between scenarios, which balances the performance and training efficiency of the proposed CL approach. Finally, datasets collected from different locations are used to design continual training and testing methods in experiments. Experimental results show that the proposed approach achieves consistently high prediction accuracy in continuous scenarios without re-training, which mitigates catastrophic forgetting compared to non-CL approaches. The implementation of the proposed approach is publicly available at https://github.com/BIT-Jack/D-GSM
translated by 谷歌翻译
Contrastive learning (CL), which can extract the information shared between different contrastive views, has become a popular paradigm for vision representation learning. Inspired by the success in computer vision, recent work introduces CL into graph modeling, dubbed as graph contrastive learning (GCL). However, generating contrastive views in graphs is more challenging than that in images, since we have little prior knowledge on how to significantly augment a graph without changing its labels. We argue that typical data augmentation techniques (e.g., edge dropping) in GCL cannot generate diverse enough contrastive views to filter out noises. Moreover, previous GCL methods employ two view encoders with exactly the same neural architecture and tied parameters, which further harms the diversity of augmented views. To address this limitation, we propose a novel paradigm named model augmented GCL (MA-GCL), which will focus on manipulating the architectures of view encoders instead of perturbing graph inputs. Specifically, we present three easy-to-implement model augmentation tricks for GCL, namely asymmetric, random and shuffling, which can respectively help alleviate high- frequency noises, enrich training instances and bring safer augmentations. All three tricks are compatible with typical data augmentations. Experimental results show that MA-GCL can achieve state-of-the-art performance on node classification benchmarks by applying the three tricks on a simple base model. Extensive studies also validate our motivation and the effectiveness of each trick. (Code, data and appendix are available at https://github.com/GXM1141/MA-GCL. )
translated by 谷歌翻译
In the field of antibody engineering, an essential task is to design a novel antibody whose paratopes bind to a specific antigen with correct epitopes. Understanding antibody structure and its paratope can facilitate a mechanistic understanding of its function. Therefore, antibody structure prediction from its sequence alone has always been a highly valuable problem for de novo antibody design. AlphaFold2, a breakthrough in the field of structural biology, provides a solution to predict protein structure based on protein sequences and computationally expensive coevolutionary multiple sequence alignments (MSAs). However, the computational efficiency and undesirable prediction accuracy of antibodies, especially on the complementarity-determining regions (CDRs) of antibodies limit their applications in the industrially high-throughput drug design. To learn an informative representation of antibodies, we employed a deep antibody language model (ALM) on curated sequences from the observed antibody space database via a transformer model. We also developed a novel model named xTrimoABFold to predict antibody structure from antibody sequence based on the pretrained ALM as well as efficient evoformers and structural modules. The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss. xTrimoABFold outperforms AlphaFold2 and other protein language model based SOTAs, e.g., OmegaFold, HelixFold-Single, and IgFold with a large significant margin (30+\% improvement on RMSD) while performing 151 times faster than AlphaFold2. To the best of our knowledge, xTrimoABFold achieved state-of-the-art antibody structure prediction. Its improvement in both accuracy and efficiency makes it a valuable tool for de novo antibody design and could make further improvements in immuno-theory.
translated by 谷歌翻译
High-quality traffic flow generation is the core module in building simulators for autonomous driving. However, the majority of available simulators are incapable of replicating traffic patterns that accurately reflect the various features of real-world data while also simulating human-like reactive responses to the tested autopilot driving strategies. Taking one step forward to addressing such a problem, we propose Realistic Interactive TrAffic flow (RITA) as an integrated component of existing driving simulators to provide high-quality traffic flow for the evaluation and optimization of the tested driving strategies. RITA is developed with fidelity, diversity, and controllability in consideration, and consists of two core modules called RITABackend and RITAKit. RITABackend is built to support vehicle-wise control and provide traffic generation models from real-world datasets, while RITAKit is developed with easy-to-use interfaces for controllable traffic generation via RITABackend. We demonstrate RITA's capacity to create diversified and high-fidelity traffic simulations in several highly interactive highway scenarios. The experimental findings demonstrate that our produced RITA traffic flows meet all three design goals, hence enhancing the completeness of driving strategy evaluation. Moreover, we showcase the possibility for further improvement of baseline strategies through online fine-tuning with RITA traffic flows.
translated by 谷歌翻译
包括设备诊断和异常检测在内的工业分析很大程度上依赖于异质生产数据的整合。知识图(kgs)作为数据格式和本体作为统一数据模式是一个突出的解决方案,它提供了高质量的数据集成以及一种方便且标准化的方式来交换数据并将分析应用程序分层。然而,它们之间高度不匹配的本体和工业数据的本体学自然而然导致低质量的KG,这阻碍了工业分析的采用和可扩展性。实际上,这样的kg大大增加了为用户编写查询的培训时间,消耗大量存储以获取冗余信息,并且很难维护和更新。为了解决这个问题,我们提出了一种本体论重塑方法,将本体论转换为KG模式,以更好地反映基本数据,从而有助于构建更好的KGS。在这张海报中,我们对正在进行的研究进行了初步讨论,并通过Bosch上有关现实世界行业数据的大量SPARQL查询来评估我们的方法,并讨论我们的发现。
translated by 谷歌翻译
知识图(kg)用于广泛的应用中。由于行业的数据量和多样性,KG生成的自动化是非常需要的。 KG生成的一种重要方法是将原始数据映射到给定的KG模式,即域本体论,并根据本体论构建实体和属性。但是,这种本体的自动生成是苛刻的,现有的解决方案通常并不令人满意。一个重要的挑战是在本体工程的两个原则之间进行权衡:知识方向和数据取向。前者规定,本体应该对领域的一般知识进行建模,而后者则强调反映数据特异性以确保良好的可用性。我们通过我们的本体研究方法重塑方法来应对这一挑战,该方法将给定领域本体论转换为较小的本体论的过程是自动化的,该本体学是KG模式。域本体论可以设计为以知识为导向,而KG模式涵盖了数据特异性。此外,我们的方法允许在循环中将用户偏好包含在内。我们证明了我们正在进行的有关本体研究重塑的研究,并使用实际的工业数据进行了评估,并有令人鼓舞的结果。
translated by 谷歌翻译
深度学习的最新进展极大地推动了语义解析的研究。此后,在许多下游任务中进行了改进,包括Web API的自然语言接口,文本到SQL的生成等。但是,尽管与这些任务有着密切的联系,但有关知识库的问题的研究(KBQA)的进展相对缓慢。我们将其确定并归因于KBQA的两个独特挑战,模式级的复杂性和事实级别的复杂性。在这项调查中,我们将KBQA放置在更广泛的语义解析文献中,并全面说明了现有的KBQA方法如何试图应对独特的挑战。无论面临什么独特的挑战,我们都认为我们仍然可以从语义解析的文献中汲取太大的灵感,这被现有的KBQA研究所忽略了。基于我们的讨论,我们可以更好地了解当前KBQA研究的瓶颈,并阐明KBQA的有希望的方向,以跟上语义解析的文献,尤其是在预训练的语言模型时代。
translated by 谷歌翻译
在这项比赛中,参与者将使用时间序列数据在教育背景下解决机器学习的两个基本因果挑战。首先是确定不同构造之间的因果关系,其中构造被定义为学习的最小要素。第二个挑战是预测学习一个结构对回答其他结构问题的能力的影响。应对这些挑战将使学生的知识获取优化,这可以部署在影响数百万学生的真正的edtech解决方案中。参与者将在理想化的环境中运行这些任务,并具有合成数据和现实情况,并通过一系列A/B测试收集的评估数据。
translated by 谷歌翻译